首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intercellular power transmission along trichomes of cyanobacteria
Authors:LM Chailakhyan  AN Glagolev  TN Glagoleva  GV Murvanidze  TV Potapova  VP Skulachev
Institution:A.N. Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, Moscow, 117234 U.S.S.R.
Abstract:An attempt at demonstrating lateral power transmission over millimeter distances along a coupling membrane has been undertaken. Trichomes of the multicellular filamentous cyanobacteria Phormidium uncinatum were illuminated with a very narrow light beam forming a light spot that covered only 4–5% of a 1–2 mm long cyanobacterial trichome. Such illumination was found to support motility (gliding along agar surface) of the trichome under conditions when the light was the only energy source. It was also shown that illumination with the light spot caused rotation of rings of slime (accompanying the operation of the ‘motors’ responsible for the motility of cyanobacteria) not only in the illuminated, but also in the distal, nonilluminated part of the trichome. Electric potential transmission along trichomes was revealed by means of the extracellular electrode technique. The light spot was found to induce generation of an electric potential difference between two electrodes in the dark region of the trichomes, which were placed at different distances from the illuminated end. Cutting the trichomes between the light spot and the closest ‘dark’ electrode abolished this effect. Valinomycin + K+ and carbonyl cyanide p-trifluoromethoxyphenylhydrazone affected the potential difference formation between two ‘dark’ electrodes much stronger than that between a light and a dark electrode. All the light spot-induced effects develop in the seconds time scale. Both the amplitudes and the kinetics of the potential difference measured with four electrodes placed along the trichome prove to be in good agreement with the theoretical curves computed on the basis of the electric cable equation. It is concluded that transcellular power transmission in the form of Δψ takes place along trichomes of cyanobacteria. This confirms the hypothesis about the biological function of Δψ as a transportable form of energy.
Keywords:Trichome  Power transmission  Electric potential transmission  Proton-motive force  (Cyanobacteria)  Δψ  transmembrane electric potential difference  DCCD  FCCP  To whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号