首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of salinity and nitrogen on growth,ion relations and proline accumulation in Triglochin bulbosa
Authors:Naidoo  G  Naidoo  Y
Institution:(1) Department of Botany, University of Durban-Westville, Private Bag X54001, Durban, 4000, South Africa;(2) Electron Microscope Unit, University of Durban-Westville, Private Bag X54001, Durban, 4000, South Africa
Abstract:The effects of salinity and nitrogen on growth, ion relations and prolineaccumulation in the monocotyledonous halophyte, Triglochin bulbosa,was investigated in hydroponic culture over 5 months. The experimentaldesign was a 3 × 3 factorial with three salinity treatments (0, 150 and 300 mol m-3 NaCl) and three levels of N (5, 10 and 20 mgrgml-1 N as NaNO3). Total and root dry biomass accumulationwere significantly affected by salinity, but not by N or N × salinityinteraction. Increase in NaCl from 0 to 150 mol m-3 had no effecton total or root dry biomass, while further increase in salinity to 300mol m-3 significantly reduced biomass by 21% and 25%respectively. Shoot dry biomass, which was significantly affected by N andnot by salinity, increased with increase in N from 5 to 10 mgrgml-1. Ion concentrations in roots and shoots were significantlyaffected by salinity, but not by N or N × salinity interaction. Theconcentration of Na+ and Cl- in roots and shoots increasedprogressively with an increase in salinity, while that of K+ decreased. Under non-saline conditions, Na+/K+ ratios were low (0.41to 0.44) and increased significantly with an increase in salinity in both rootsand shoots. Shoot sap osmotic potentials decreased progressively with anincrease in salinity. Increase in N in the hydroponic solution from 5 to20 mgrg ml-1 significantly increased root and shoot N by 66%and 41% respectively. Tissue concentrations of proline were significantlyaffected by salinity and substrate N but not by N × salinity interaction. Theconcentration of proline in roots and shoots increased significantly by334% and 48%, respectively, with an increase in salinity from 0 to 300mol m-3 NaCl. Increase in substrate N from 5 to 20 mgrg ml-1 significantly increased proline in roots and shoots by 66% and41% respectively. The significance of substrate N on the accumulationof proline is discussed in relation to salt tolerance.
Keywords:halophyte  nitrogen  proline  salinity  Triglochin bulbosa
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号