首页 | 本学科首页   官方微博 | 高级检索  
     


Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem
Authors:GEORG WOHLFAHRT,LYNN F. FENSTERMAKER&dagger  , JOHN A. ARNONE III&Dagger  
Affiliation:Institut für Ökologie, Universität Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria,;Division of Earth and Ecosystem Science, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV 89119, USA,;Division of Earth and Ecosystem Science, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
Abstract:The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m−2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3–4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed – especially since arid and semiarid biomes make up >30% of Earth's land surface.
Keywords:eddy covariance    heterotrophic respiration    Mojave Global Change Facility (MGCF)    photosynthesis    rain pulse    uncertainty analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号