首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dependence of apparent viscosity on mycelial morphology of Streptomyces fradiae culture in various nitrogen sources
Authors:Choi D B  Park E Y  Okabe M
Institution:Institute of Life Science, Chosun University, 375, Seo-Suk Dong, Dong-ku, Kwang-Ju, Korea.
Abstract:To examine what causes increased viscosity in culture broth in Streptomyces fradiae culture, various natural nitrogen sources were investigated. Extracellular protease activity increased with culture time and decomposed the natural nitrogen source into amino acids. In the case of gluten meal, after a culture time of 5 d, concentrations of glutamic acid and aspartic acid had increased to 600 and 200 mg/L, respectively, which were about 3- and 2-fold as high as levels in cultures under similar conditions using Pharmamedia. For various amino acids tested, the addition of glutamic acid or aspartic acid mixture to the culture medium raised the apparent viscosity to its highest demonstrated value, 260 mPa.s after 5 d of culture, which was 3-fold higher than without amino acids. Consumption of the decomposed glutamic acid and aspartic acid was dependent on the activities of glutamate dehydrogenase and aspartate aminotransferase, respectively. When ammonium ion was used as the nitrogen source, cell concentration reached 1.75 g/L measured as an intracellular nucleic acid concentration, which was about 2.3-fold higher than that with any other natural nitrogen source. However, apparent viscosity was only 75 mPa.s, a value one-third that of the amino acid mixture, and 70% of the pellets were bigger than 1.2 x 10(4) microm(2). In the case of gluten meal or the amino acid mixture, pellets bigger than 1.2 x 10(4) microm(2) comprised only 8%. This demonstrates that consumption of some amino acids affected the formation of filamentous morphology, which caused an increase in the apparent viscosity of the culture broth, and the apparent viscosity was not caused by the mycelial concentration but the mycelial morphology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号