首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biokinetics in acidogenesis of highly suspended organic wastewater by adenosine 5' triphosphate analysis
Authors:Yu Youngseob  Hansen Conly L  Hwang Seokhwan
Institution:School of Environmental Engineering, Pohang University of Science and Technology, San 31, Pohang, Kyungbuk, South Korea.
Abstract:In this paper, we pointed out the problems of using conventional volatile suspended solids (VSS) and chemical oxygen demand (COD) to evaluate biokinetic coefficients, especially for the treatment of highly suspended organic wastewater. We also introduced a novel approach to evaluate biokinetic coefficients by measurement of adenosine 5'-triphosphate (ATP) of microorganisms. The concept of using ATP analysis in biokinetic evaluations with highly suspended wastewater was shown to be effective. This study also showed that the conventional VSS and COD methods were strongly affected by incoming suspended organics in the wastewater and by biokinetics of microorganisms. A cheese-processing wastewater was used in evaluating the biokinetics of mesophilic acidogens. The concentration of COD and total suspended solids in the wastewater was 63.3 g/L and 12.4 g/L, respectively. The TSS was 23.6% of total solids concentration. A high ratio of VSS to total suspended solids of 96.7% indicated that most of the suspended particles were organic materials. Lactose and protein were the major organic components contributing COD in the wastewater, and a total of 94.2% of the COD in the wastewater was due to the presence of lactose and protein. Two different physiological conditions where the maximum rates of acetate and butyrate production occurred were tested. These were pH 7 (condition A for acetate production) and pH 7.3 (condition B for butyrate production) at 36.2C, respectively. Based on the molecular structures of the major organic substances and microbial ATP analysis, the residual substrate and microbial concentrations were stoichiometrically converted to substrate COD (SuCOD) and microbial VSS (MVSS), respectively, using correlation coefficients reported previously. These SuCOD and MVSS were simultaneously used to evaluate the biokinetic coefficients using Monod-based mathematical equations. The nonlinear least squares method with 95% confidence interval was used to evaluate biokinetic coefficients. The maximum microbial growth rate, mu(max) and half saturation coefficient, K(s), for conditions A and B were determined to be 9.9 +/- 0.3 and 9.3 +/- 1.0 day(-1) and 134.0 +/- 58.3 and 482.5 +/- 156.5 mg SuCOD/L, respectively. The microbial yield coefficient, Y, and microbial decay rate coefficient, k(d) for conditions A and B were determined to be 0.29 +/- 0.03 and 0.20 +/- 0.05 mg MVSS/mg SuCOD, and 0.14 +/- 0.05 and 0.25 +/- 0.05 day(-1), respectively. Specific substrate utilization rate at condition B was 43.8 +/- 20.6 mg SuCOD/mg MVSS/day, which was 31% higher than that at condition A.
Keywords:acidogens  nonlinear parameter estimation  growth kinetics  adenosine 5′‐triphosphate  cheese industry wastewater  suspended organic wastewater
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号