首页 | 本学科首页   官方微博 | 高级检索  
     


Differential requirement of unfolded protein response pathway for calreticulin expression in Caenorhabditis elegans
Authors:Lee Dukgyu  Singaravelu Gunasekaran  Park Byung-Jae  Ahnn Joohong
Affiliation:Department of Life Science, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, Korea.
Abstract:Accumulation of unfolded proteins in the endoplasmic reticulum triggers the unfolded protein response (UPR) pathway, which increases the expression of chaperones to maintain the homeostasis. Calreticulin is a calcium-binding chaperone located in the lumen of endoplasmic reticulum (ER). Here we show that in response to a UPR inducing reagent, tunicamycin, the expression of calreticulin (crt-1) is specifically up-regulated in Caenorhabditis elegans. Tunicamycin (TM) induced expression of the crt-1 requires IRE-1 and XBP-1 but is ATF-6 and PEK-1 independent. Analysis of the crt-1 promoter reveals a putative XBP-1 binding site at the -284 to -278 bp region, which was shown to be necessary for TM-mediated induction. Genetic analysis of crt-1 mutants and mutants of UPR pathway genes show various degrees of developmental arrest upon TM treatment. Our results suggest that the TM-induced UPR pathway culminates in the up-regulation of crt-1, which protects the worm from deleterious accumulation of unfolded proteins in the ER. Knockdown of the crt-1, pdi-2, or pdi-3 increased the crt-1 expression, whereas knockdown of the hsp-3 or hsp-4 did not have any effect on crt-1 expression, indicating the existence of complex compensatory networks to cope up with ER stress.
Keywords:ER, endoplasmic reticulum   TM, tunicamycin   GFP, green fluorescence protein   UPR, unfolded protein response
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号