首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ameliorative role of zinc on maize growth (Zea mays L.) under salt-affected soil conditions
Authors:U C Shukla  A K Mukhi
Institution:(1) Department of Soil Science Faculty of Agriculture, University of Maiduguri, Maiduguri, Nigeria;(2) Department of Soils, Haryana Agricultural University, 125004 Hissar, India;(3) Present address: Department of Soil Science, University of Maiduguri, Maiduguri, Nigeria
Abstract:A greenhouse experiment, growing maize for six weeks, was conducted to evaluate the ameliorative role of Zn (0 and 10 ppm Zn) under saline (ECe4, 8 and 12 mmhos/cm), Sodic (ESP 10, 20 and 30) and saline-sodic (all possible combinations of above salinity and sodicity levels), and normal soil conditions using a sandy loam (Typic Ustochrepts) soil sample.Zinc ameliorated plant growth under salt-affected soil conditions. Ameliorative effect was more under sodic than under saline or saline-sodic soil conditions. Shoot yield decreased with Salinity level of 12 mmhos/cm, and ESP 30 and adverse effects were accentuated with increasing level of ESP and Salinity, respectively.Shoot Zn increased with applied Zn. Increasing sodicity in soil under Zn deficient or low salinity conditions generally decreased shoot Zn, whereas the low level of soil salinization counteracted the adverse effect of high sodicity. Shoot Na increased but K decreased with increasing sodicity and salinity in soil. Shoot Na decreased but K increased with applied Zn. Shoot Ca increased with salinity levels of 4 and 8 mmhos/cm, but decreased with 12 mmhos/cm at 0 Zn level. Sodicity decreased shoot Ca, whereas Zn counteracted adverse effect of high sodicity. Shoot Mg generally increased with increasing salinity, but decreased with increasing sodicity. Zinc had no definite effect. Shoot Ca/Na and K/Na ratios were widened with Zn and narrowed down with high ESP.The effects of salinity, sodicity, and Zn on plant growth and its composition were generally associated with their respective roles in dry matter production, and inter-ionic relationships among Ca, Mg, K, Na and Zn in soils and plants.Contribution from the Department of Soils, Haryana Agricultural University, Hissar, 125004, Indiaformer Research Fellow, respectively.
Keywords:Nutrient interactions  Salt-affected soils  Soil salinity  Soil sodicity  Zinc response
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号