首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Surprising roles of electrostatic interactions in DNA-ligand complexes
Authors:Howerton Shelley B  Nagpal Akankasha  Williams Loren Dean
Institution:School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA.
Abstract:The positions of cations in x-ray structures are modulated by sequence, conformation, and ligand interactions. The goal here is to use x-ray diffraction to help resolve structural and thermodynamic roles of specifically localized cations in DNA-anthracycline complexes. We describe a 1.34 A resolution structure of a CGATCG(2)-adriamycin(2) complex obtained from crystals grown in the presence of thallium (I) ions. Tl(+) can substitute for biological monovalent cations, but is readily detected by distinctive x-ray scattering, obviating analysis of subtle differences in coordination geometry and x-ray scattering of water, sodium, potassium, and ammonium. Six localized Tl(+) sites are observable adjacent to each CGATCG(2)-adriamycin(2) complex. Each of these localized monovalent cations are found within the G-tract major groove of the intercalated DNA-drug complex. Adriamycin appears to be designed by nature to interact favorably with the electrostatic landscape of DNA, and to conserve the distribution of localized cationic charge. Localized inorganic cations in the major groove are conserved upon binding of adriamycin. In the minor groove, inorganic cations are substituted by a cationic functional group of adriamycin. This partitioning of cationic charge by adriamycin into the major groove of CG base pairs and the minor groove of AT base pairs may be a general feature of sequence-specific DNA-small molecule interactions and a potentially useful important factor in ligand design.
Keywords:major groove  minor groove  intercalation  daunomycin  adriamycin  alkaline metal  thallium  x‐ray diffraction  anomalous scattering
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号