首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The growth of tomato (Lycopersicon esculentum Mill.) hypocotyls in the light and in darkness differentially involves auxin.
Authors:Y Kraepiel  C Agnes  L Thiery  R Maldiney  E Miginiac  M Delarue
Institution:Laboratoire de Physiologie Cellulaire et Moleculaire des Plantes, Universite Pierre et Marie Curie, Paris, France. yk@ccr.jussieu.fr
Abstract:Light and auxin antagonistically regulate hypocotyl elongation. We have investigated the physiological interactions of light and auxin in the control of tomato (Lycopersicon esculentum Mill.) hypocotyl elongation by studying the auxin-insensitive mutant diageotropica (dgt). The length of the hypocotyls of the dgt mutant is significantly reduced when compared to the wild type line Ailsa Craig (AC) in the dark and under red light, but not under the other light conditions tested, indicating that auxin sensitivity is involved in the elongation of hypocotyls only in these conditions. Similarly, the auxin transport inhibitor naphthylphthalamic correction of naphtylphtalamic] acid (NPA) differentially affects elongation of dark- or light-grown hypocotyls of the MoneyMaker (MM) tomato wild type. Using different photomorphogenic mutants, we demonstrate that at least phytochrome A, phytochrome B1 and, to a much lesser extent correction of extend], cryptochrome 1, are necessary for a switch from an auxin transport-dependent elongation of hypocotyls in the dark to an auxin transport-independent elongation in the light. Interestingly, the dgt mutant and NPA-treated seedlings exhibit a looped phenotype only under red light, indicating that the negative gravitropism of hypocotyls also differentially involves auxin in the various light conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号