首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Trichotoxin A-40, a new membrane-exciting peptide. Part B. Voltage-dependent pore formation in bilayer lipid membranes and comparison with other alamethicin analogues
Authors:Günther Boheim  Gerhard Irmscher  Günther Jung
Institution:1. Universität Konstanz, Fachbereich Biologie, D7750 Konstanz G.F.R.;2. Universität Tübingen, Institut für Organische Chemie, D-7400-Tübingen G.F.R.
Abstract:Trichotoxin A-40 induces voltage-dependent pores in bilayer lipid membranes comparable to those formed by alamethicin and suzukacillin. The conductance values of the trichotoxin A-40 pores are of similar magnitude and show the same characteristic pattern sequence of non-integral multiples of a unit-conductance step as alamethicin and suzukacillin.However, voltage-jump current-relaxation experiments show significant differences between trichotoxin A-40 and alamethicin and suzukacillin. With trichotoxin A-40 three different relaxation processes could be observed, whereas with alamethicin and suzukacillin only two processes had been distinguished. The fast process in each case is related to pore state transitions and the slower (medium) process to the decay rate of pores. The third very slow process, which is not found with alamethicin and suzukacillin, could not clearly be assigned to a molecular mechanism. Whereas in the case of alamethicin and suzukacillin the relaxation amplitude of the slow process is considerably larger than the relaxation amplitude of the fast process, the reverse is true for trichotoxin A-40, where the largest relaxation amplitude is that of the fast process.Contrary to alamethicin and suzukacillin, trichotoxin A-40 is soluble in the lipid/decane membrane-forming solution, when added from an ethanolic stock solution. Its bilayer-modifying properties are not changed, whether the antibiotic is added to the aqueous salt solution or to the membrane-forming solution.Several different analogues of alamethicin, suzukacillin and trichotoxin A-40 have been investigated and compared with respect to the induced current-voltage characteristics in lipid bilayers. A suzukacillin A-derivative where phenylalaninol had been split off is active as well as trichotoxin A-40 which lacks the phenylalaninol group by nature. Different C-terminal groups like -COOH, -CONH2, -COOCH3 and -CO-Ala-Ala-OCH3 cause qualitative changes but not the loss of the pore-formation property.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号