首页 | 本学科首页   官方微博 | 高级检索  
     


Long-term Partitioning, Storage and Remobilization of 14C Assimilated by Trifolium repens (cv. Blanca)
Authors:DANCKWERTS, J. E.   GORDON, A. J.
Affiliation:The Animal and Grassland Research Institute Hurley, Maidenhead, Berks SL6 4LR, UK
"{dagger}" Welsh Plant Breeding Station, Plas Gogerddan, Aberystwyth, Dyfed, SY23 3EB, UK
Abstract:The fourth fully expanded leaf on the main stolon of white cloverplants was exposed to 14CO2. Thereafter, quantitative and fractionalanalysis of the partitioning, storage and remobilization afterdefoliation of the 14C labelled assimilate was sequentiallyconducted over a 2- to 3-week period. In undefoliated plants, most 14C reached its final destinationwithin 24 h of feeding. Forty percent of assimilated 14C waslost through respiration, while the rest was exported, predominantlyto meristems, but also to roots, stolons and leaves. The 14Cinitially translocated to meristems was subsequently recoveredin stolon and leaf tissue as the plants matured. Approximately 10% of assimilated 14C was invested into long-termstorage in roots and stolons. These reserves were remobilizedafter both partial and total defoliation, and a portion of theremobilized 14C was incorporated into new growth, Partly defoliatedplants regrew more rapidly than totally defoliated plants, butmore 14C reserve depletion took place in the totally defoliatedtreatment. Reserve depletion took place from both stolons androots, but stolon reserves were preferentially utilized. Bothhigh and low molecular weight storage compounds were involved. Trifolium repens, white clover, assimilate partitioning, storage, remobilization, defoliation
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号