首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of nitric oxide in methacholine-induced sweating and vasodilation in human skin.
Authors:Kichang Lee  Gary W Mack
Institution:John B. Pierce Laboratory, Yale University School of Medicine, New Haven, Connecticut, USA.
Abstract:The purpose of this study was to determine whether the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) demonstrates significant muscarinic-receptor antagonism during methacholine (MCh)-stimulated sweating in human forearm skin. Three intradermal microdialysis probes were placed in the skin of eight healthy adults (4 men and 4 women). MCh in the range of 0.033-243 mM in nine steps was perfused through a microdialysis probe with and without the presence of the nitric oxide synthase inhibitor L-NAME (10 mM) or the L-arginine analog NG-monomethyl-L-arginine (L-NMMA; 10 mM). Local sweat rate (sweat rate) and skin blood flow (laser-Doppler velocimetry) were measured directly over each microdialysis probe. We observed similar resting sweat rates at MCh only, MCh and L-NAME, and MCh and L-NMMA sites averaging 0.175 +/- 0.029, 0.186 +/- 0.034, and 0.139 +/- 0.027 mg x min(-1) x cm(-2), respectively. Peak sweat rate (0.46 +/- 0.11, 0.56 +/- 0.16, and 0.53 +/- 0.16. mg x min(-1) x cm(-2)) was also similar among all three sites. MCh produced a sigmoid-shape dose-response curve and 50% of the maximal attainable response (0.42 +/- 0.14 mM for MCh only) was shifted rightward shift in the presence of L-NAME or L-NMMA (2.88 +/- 0.79 and 3.91 +/- 1.14 mM, respectively; P < 0.05). These results indicate that nitric oxide acts to augment MCh-stimulated sweat gland function in human skin. In addition, L-NAME consistently blunted the MCh-induced vasodilation, whereas L-NMMA did not. These data support the hypothesis that muscarinic-induced dilation in cutaneous blood vessels is not mediated by nitric oxide production and that the role of L-NAME in attenuating acetylcholine-induced vasodilation may be due to its potential to act as a muscarinic-receptor antagonist.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号