首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An Escherichia coli S1-like ribosomal protein is immunologically conserved in Gram-negative bacteria, but not in Gram-positive bacteria
Authors:Véronique Hahn  Patrick Stiegler
Institution:Institute of Biochemistry and Physiology of Microorganisms, U.S.S.R. Academy of Sciences, Pushchino, Moscow Region, 142292, U.S.S.R.
Abstract:Abstract A study was made of the enzymology of primary and intermediary pathways of C1 metabolism in three strains of non-motile obligately methylotrophic bacteria. Each uses a variant of the ribulosemonophosphate (RMP) cycle of formaldehyde fixation which involves the Entner-Doudoroff route for hexose-phosphate cleavage and transaldolase/transketolase mode of rearrangement. The organisms possess high levels of hexulose-phosphate synthase and NAD(P)-linked glucose-6-phosphate and 6-phosphogluconate dehydrogenases. In addition they contain small activities of dye-linked methanol and methylamine dehydrogenases, PMS- and NAD-linked formaldehyde and formate dehydrogenases. This indicates cyclic rather than direct oxidation of formaldehyde derived from methanol or methylamine. The tricarboxylic acid cycle is defective in 2-ketoglutarate dehydrogenase and the glyoxylate shunt is not operating because of the absence of malate synthase. Oxaloacetate is regenerated by (phosphoenol) pyruvate carboxylases. NH+ 4 is assimilated mainly by glutamate dehydrogenase. The results show metabolic similarities between motile and non-motile obligate methanol and methylamine utilizers.
Keywords:Obligate methanol  methylamine utilizers  enzyme profiles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号