首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Engineering levoglucosan metabolic pathway in <Emphasis Type="Italic">Rhodococcus jostii</Emphasis> RHA1 for lipid production
Authors:Xiaochao Xiong  Jieni Lian  Xiaochen Yu  Manuel Garcia-Perez  Shulin Chen
Institution:1.Department of Biological Systems Engineering,Washington State University,Pullman,USA;2.Department of Chemical and Biological Engineering,Iowa State University,Ames,USA;3.Department of Biochemistry, Biophysics, and Molecular Biology,Iowa State University,Ames,USA
Abstract:Oleaginous strains of Rhodococcus including R. jostii RHA1 have attracted considerable attention due to their ability to accumulate triacylglycerols (TAGs), robust growth properties and genetic tractability. In this study, a novel metabolic pathway was introduced into R. jostii by heterogenous expression of the well-characterized gene, lgk encoding levoglucosan kinase from Lipomyces starkeyi YZ-215. This enables the recombinant R. jostii RHA1 to produce TAGs from the anhydrous sugar, levoglucosan, which can be generated efficiently as the major molecule from the pyrolysis of cellulose. The recombinant R. jostii RHA1 could grow on levoglucosan as the sole carbon source, and the consumption rate of levoglucosan was determined. Furthermore, expression of one more copy of lgk increased the enzymatic activity of LGK in the recombinant. However, the growth performance of the recombinant bearing two copies of lgk on levoglucosan was not improved. Although expression of lgk in the recombinants was not repressed by the glucose present in the media, glucose in the sugar mixture still affected consumption of levoglucosan. Under nitrogen limiting conditions, lipid produced from levoglucosan by the recombinant bearing lgk was up to 43.54 % of the cell dry weight, which was comparable to the content of lipid accumulated from glucose. This work demonstrated the technical feasibility of producing lipid from levoglucosan, an anhydrosugar derived from the pyrolysis of lignocellulosic materials, by the genetically modified rhodococci strains.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号