首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of an evolved carotenoids hyper-producer of <Emphasis Type="Italic">Saccharomyces cerevisiae</Emphasis> through bioreactor parameter optimization and Raman spectroscopy
Authors:Michelle L Olson  James Johnson  William F Carswell  Luis H Reyes  Ryan S Senger  Katy C Kao
Institution:1.Department of Chemical Engineering,Texas A&M University,College Station,USA;2.Department of Biological Systems Engineering,Virginia Tech,Blacksburg,USA;3.Institute for the Study of Inborn Errors of Metabolism, School of Sciences,Pontificia Universidad Javeriana,Bogotá D.C.,Colombia
Abstract:An evolutionary engineering approach for enhancing heterologous carotenoids production in an engineered Saccharomyces cerevisiae strain was used previously to isolate several carotenoids hyper-producers from the evolved populations. β-Carotene production was characterized in the parental and one of the evolved carotenoids hyper-producers (SM14) using bench-top bioreactors to assess the impact of pH, aeration, and media composition on β-carotene production levels. The results show that with maintaining a low pH and increasing the carbon-to-nitrogen ratio (C:N) from 8.8 to 50 in standard YNB medium, a higher β-carotene production level at 25.52 ± 2.15 mg β-carotene g?1 (dry cell weight) in the carotenoids hyper-producer was obtained. The increase in C:N ratio also significantly increased carotenoids production in the parental strain by 298 % from 5.68 ± 1.24 to 22.58 ± 0.11 mg β-carotene g?1 (dcw)]. In this study, it was shown that Raman spectroscopy is capable of monitoring β-carotene production in these cultures. Raman spectroscopy is adaptable to large-scale fermentations and can give results in near real-time. Furthermore, we found that Raman spectroscopy was also able to measure the relative lipid compositions and protein content of the parental and SM14 strains at two different C:N ratios in the bioreactor. The Raman analysis showed a higher total fatty acid content in the SM14 compared with the parental strain and that an increased C:N ratio resulted in significant increase in total fatty acid content of both strains. The data suggest a positive correlation between the yield of β-carotene per biomass and total fatty acid content of the cell.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号