首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide reduction in BioDeNOx reactors: kinetics and mechanism
Authors:van der Maas Peter  Manconi Isabella  Klapwijk Bram  Lens Piet
Institution:Sub-Department of Environmental Technology, Wageningen University, PO Box 8129, 6700 EV Wageningen, The Netherlands.
Abstract:Biological reduction of nitric oxide (NO) to di-nitrogen (N(2)) gas in aqueous Fe(II)EDTA(2-) solutions is a key reaction in BioDeNOx, a novel process for NOx removal from flue gases. The mechanism and kinetics of the first step of NO reduction, that is, the conversion of NO to N(2)O, was determined in batch experiments using various types of inocula. Experiments were performed in Fe(II)EDTA(2-) medium (5-25 mM) under BioDeNOx reactor conditions (55 degrees C, pH 7.2 +/- 0.2) with ethanol as external electron donor. BioDeNOx reactor mixed liquor gave the highest NO reduction rates (+/-0.34 nmol s(-1) mg(prot)(-1)) with an estimated K(m) value for NO lower than 10 nM. The specific NO (to N(2)O) reduction rate depended on the NO (aq) and Fe(II)EDTA(2-) concentration as well as the temperature. The experimental results, complemented with kinetic and thermodynamic considerations, show that Fe(II)EDTA(2-), and not ethanol, is the primary electron donor for NO reduction, that is, the BioDeNOx reactor medium (the redox system Fe(II)EDTA(2-)/Fe(III)EDTA(-)) interferes with the NO reduction electron transfer chain and thus enhances the NO denitrification rate.
Keywords:nitric oxide  iron  EDTA  denitrification  redox buffer  extracellular electron transfer
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号