首页 | 本学科首页   官方微博 | 高级检索  
     


LYSINE METABOLISM IN THE RAT BRAIN: BLOOD—BRAIN BARRIER TRANSPORT, FORMATION OF PIPECOLIC ACID AND HUMAN HYPERPIPECOLATEMIA
Authors:YUNG-FENG CHANG
Affiliation:Department of Microbiology, University of Maryland Dental School, Baltimore, MD 21201, U.S.A.
Abstract:Through the use of intravenous pulse injection of L-[U-14C] lysine, the blood-brain barrier transport of L-lysine was studied. The uptake of L-lysine plus metabolites in the brain remained essentially unchanged at approx 0.002–0.005 nmol/g in the low dose (3μg per kg body weight) injection, and 20–40 nmol/g in the high dose (30 mg/kg) injection throughout the time intervals of up to 60 min. The uptake of L-lysine plus metabolites in the heart, however, decreased substantially from 0.03 to 0.003 nmol/g in the low dose injection and from 320 to 62 nmol/g in the high dose injection. The plasma to heart uptake ratio only decreased slightly through the 60 min period: from 6 to 2 in either the low or high dose L-lysine injection. The plasma to brain uptake ratio, however, decreased rapidly from a high of 62 to a low of about 4 in either the low or high dose injection throughout the 60-min time course. Study of labeled L-pipecolate formation in the plasma and individual organs indicates that this compound was formed only in the brain to a significant level within 0.5 min of 14C-L-lysine intravenous pulse injection. Labeled pipecolate was recovered from heart, liver, kidney and plasma in significant quantities only at 2 min or later after pulse-injection. It is concluded that the blood-brain barrier of L-lysine in the rat is not particularly strong and that the rat brain may be primarily responsible for L-pipecolate synthesis from L-lysine. The possible etiology of human hyperpipecolatemia is also discussed in light of the current findings.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号