首页 | 本学科首页   官方微博 | 高级检索  
     


Some theoretical aspects of reprogramming the standard genetic code
Authors:Kuba Nowak,Pawe&#x   B&#x  a   ej,Ma&#x  gorzata Wnetrzak,Dorota Mackiewicz,Pawe&#x   Mackiewicz
Affiliation:1. Faculty of Mathematics and Computer Science, University of Wrocław, ul. F. Joliot-Curie 15, 50-383 Wrocław, Poland;2. Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, ul F. Joliot-Curie 14a, 50-383 Wrocław, Poland
Abstract:Reprogramming of the standard genetic code to include non-canonical amino acids (ncAAs) opens new prospects for medicine, industry, and biotechnology. There are several methods of code engineering, which allow us for storing new genetic information in DNA sequences and producing proteins with new properties. Here, we provided a theoretical background for the optimal genetic code expansion, which may find application in the experimental design of the genetic code. We assumed that the expanded genetic code includes both canonical and non-canonical information stored in 64 classical codons. What is more, the new coding system is robust to point mutations and minimizes the possibility of reversion from the new to old information. In order to find such codes, we applied graph theory to analyze the properties of optimal codon sets. We presented the formal procedure in finding the optimal codes with various number of vacant codons that could be assigned to new amino acids. Finally, we discussed the optimal number of the newly incorporated ncAAs and also the optimal size of codon groups that can be assigned to ncAAs.
Keywords:genetic code   codon   code reprogramming   code expansion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号