首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular-level characterization of elastin-like constructs and human aortic elastin
Institution:1. Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany;2. Laboratoire SiRMa, FRE CNRS/URCA 3481, Université de Reims Champagne-Ardenne, Reims, France;3. Plateforme de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France;4. Molecular Structure and Function, Hospital for Sick Children, Toronto, Canada;5. School of Molecular Bioscience, University of Sydney, Sydney, Australia;6. Bosch Institute, University of Sydney, Sydney, Australia;7. Charles Perkins Centre, University of Sydney, Sydney, Australia
Abstract:This study aimed to characterize the structures of two elastin-like constructs, one composed of a cross-linked elastin-like polypeptide and the other one of cross-linked tropoelastin, and native aortic elastin. The structures of the insoluble materials and human aortic elastin were investigated using scanning electron microscopy. Additionally, all samples were digested with enzymes of different specificities, and the resultant peptide mixtures were characterized by ESI mass spectrometry and MALDI mass spectrometry. The MS2 data was used to sequence linear peptides, and cross-linked species were analyzed with the recently developed software PolyLinX. This enabled the identification of two intramolecularly cross-linked peptides containing allysine aldols in the two constructs. The presence of the tetrafunctional cross-link desmosine was shown for all analyzed materials and its quantification revealed that the cross-linking degree of the two in vitro cross-linked materials was significantly lower than that of native elastin. Molecular dynamics simulations were performed, based on molecular species identified in the samples, to follow the formation of elastin cross-links. The results provide evidence for the significance of the GVGTP hinge region of domain 23 for the formation of elastin cross-links. Overall, this work provides important insight into structural similarities and differences between elastin-like constructs and native elastin. Furthermore, it represents a step toward the elucidation of the complex cross-linking pattern of mature elastin.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号