首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines
Institution:1. Department of Environmental and Occupational Health, 4301 W. Markham Street Slot #820, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;2. Department of Biostatistics, 4301 W. Markham Street Slot #516, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;3. Department of Radiation Oncology, 4301 W. Markham Street, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;4. The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
Abstract:BackgroundIncreased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems.MethodsThe importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry.ResultsA significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of 13C5]glutamine demonstrated that by 12 h > 50% of excreted glutathione was derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a GLS-specific inhibitor, reduced cell proliferation and viability and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES-induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity.ConclusionsWe demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well.General significanceGlutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号