首页 | 本学科首页   官方微博 | 高级检索  
     


A fish that uses its hydrodynamic tongue to feed on land
Authors:Krijn B. Michel  Egon Heiss  Peter Aerts  Sam Van Wassenbergh
Affiliation:1.Department of Biology, Universiteit Antwerpen, Antwerp 2610, Belgium;2.Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Jena 07743, Germany;3.Department of Movement and Sports Sciences, Ghent University, Ghent 9000, Belgium;4.Evolutionary Morphology of Vertebrates, Ghent University, Ghent 9000, Belgium
Abstract:To capture and swallow food on land, a sticky tongue supported by the hyoid and gill arch skeleton has evolved in land vertebrates from aquatic ancestors that used mouth-cavity-expanding actions of the hyoid to suck food into the mouth. However, the evolutionary pathway bridging this drastic shift in feeding mechanism and associated hyoid motions remains unknown. Modern fish that feed on land may help to unravel the physical constraints and biomechanical solutions that led to terrestrialization of fish-feeding systems. Here, we show that the mudskipper emerges onto land with its mouth cavity filled with water, which it uses as a protruding and retracting ‘hydrodynamic tongue’ during the initial capture and subsequent intra-oral transport of food. Our analyses link this hydrodynamic action of the intra-oral water to a sequence of compressive and expansive cranial motions that diverge from the general pattern known for suction feeding in fishes. However, the hyoid motion pattern showed a remarkable resemblance to newts during tongue prehension. Consequently, although alternative scenarios cannot be excluded, hydrodynamic tongue usage may be a transitional step onto which the evolution of adhesive mucosa and intrinsic lingual muscles can be added to gain further independence from water for terrestrial foraging.
Keywords:prey capture   mudskipper   newt   hyoid   tongue   kinematics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号