Proteomic Analysis of the Palmitate-induced Myotube Secretome Reveals Involvement of the Annexin A1-Formyl Peptide Receptor 2 (FPR2) Pathway in Insulin Resistance
|
| |
Authors: | Jong Hyuk Yoon Dayea Kim Jin-Hyeok Jang Jaewang Ghim Soyeon Park Parkyong Song Yonghoon Kwon Jaeyoon Kim Daehee Hwang Yoe-Sik Bae Pann-Ghill Suh Per-Olof Berggren Sung Ho Ryu |
| |
Affiliation: | From the 3Department of Life Sciences,;4School of Interdisciplinary Bioscience and Bioengineering,;5Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Republic of Korea,;6The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 77, Sweden,;**Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea,;12Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea,;8School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea,;10Center for Plant Aging Research, Institute for Basic Science and Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea,;aDivision of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea |
| |
Abstract: | Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity.The obesity epidemic has been linked to the development of metabolic complications such as hyperlipidemia, insulin resistance, and hypertension (1, 2). Hyperlipidemia/dyslipidemia involves abnormally elevated levels of lipids and/or lipoproteins in the plasma (3, 4). Obese patients exhibit characteristics of hyperlipidemia/dyslipidemia, such as abnormal elevations in plasma free fatty acid, cholesterol, and triglyceride levels, as well as a reduction in high-density lipoprotein content (3–5). Elevated free fatty acid levels in the plasma of obese patients play an important role in the development of insulin resistance (6). Hence, lowering the free fatty acid level in plasma has been shown to restore insulin sensitivity in these patients (7). Palmitate (C16:0) is a saturated free fatty acid found in animal plasma. It has been reported that the concentration of plasma palmitate in obese patients is higher than in healthy individuals (6, 8). In molecular studies, palmitate has been found to induce inflammation and insulin resistance in skeletal muscle cells by promoting diacylglycerol accumulation, which in turn activates protein kinase C (PKC)-θ1 and NF-κB, leading to the inhibition of insulin-stimulated Akt phosphorylation through insulin receptor substrate 1 (IRS1) (S307) phosphorylation and IL-6 secretion (9). Sortilin was recently identified as a mediator of palmitate-dependent insulin resistance, which regulates insulin-induced glucose transporter type 4 (GLUT4) trafficking (10). Therefore, palmitate is an important hyperlipidemic/dyslipidemic component that induces insulin resistance in skeletal muscle cells.Skeletal muscle is thought to function as a tissue that produces and releases cytokines called myokines (11). As part of its extracellular signaling pathway, skeletal muscle secretes myokines that participate in myogenesis, angiogenesis, and nutrient generation in response to factors such as metabolic disorders, including insulin resistance, and exercise (11–13). Some myokines, including IL-6, IL-8, IL-15, and fibroblast growth factor 21, and brain-derived neurotrophic factor (14), are induced by exercise. Although myokines are thought to play a critical role in the regulation of (patho)physiological processes, few studies have investigated the role of myokine in metabolism. Because skeletal muscle has a major role in the regulation of glucose metabolism, it is important to identify putative crucial regulators, secreted from skeletal muscle, that modulate glucose metabolism by acting as autocrine/paracrine mediators as well as endocrine mediators (15).Here, using an optimized secretomics approach, we performed a proteomic analysis of proteins in conditioned media from myotube cultures that were either untreated or treated with palmitate to induce insulin resistance (16, 17). Using a label-free quantitative analysis method, our aim was to characterize the skeletal muscle secretome and to identify skeletal muscle-derived proteins whose secretion is modulated by palmitate-induced insulin resistance. We found 36 putative secretory proteins modulated by palmitate-induced insulin resistance. The secretion of annexin A1 was down-regulated after palmitate treatment, and the annexin A1-formyl peptide receptor 2 (FPR2) pathway played a role in palmitate-induced insulin resistance in skeletal muscle by modulating the PKC-θ pathway. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|