首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Small Peptide Inhibitor of JNK3 Protects Dopaminergic Neurons from MPTP Induced Injury via Inhibiting the ASK1-JNK3 Signaling Pathway
Authors:Jing Pan  Hui Li  Bei Zhang  Ran Xiong  Yu Zhang  Wen-Yan Kang  Wei Chen  Zong-Bo Zhao  Sheng-Di Chen
Abstract:

Introduction and Aims

The ASK1-JNK3 signaling pathway plays a pivotal role in the pathogenesis of Parkinson''s disease (PD). The specific binding of β-arrestin2 to JNK3 is essential for activation of the ASK1-JNK3 cascade, representing a potential therapeutic target for preventing dopaminergic neuronal death in PD. The aim of this study was to identify a novel strategy for the prevention of dopaminergic neuronal death in PD.

Methods

Based on the specific binding of β-arrestin2 to JNK3, a 21-amino-acid fusion peptide, termed JNK3-N-Tat, was synthesized. We evaluated the ability of this peptide to inhibit the binding of β-arrestin2 to its target domain in JNK3 in vitro and in vivo.

Results

The JNK3-N-Tat peptide inhibited activation of the ASK1-JNK3 cascade by disrupting the interaction between β-arrestin2 and JNK3. JNK3-N-Tat exerted beneficial effects through pathways downstream of JNK3 and improved mitochondrial function, resulting in attenuated MPP+/MPTP-induced damage. JNK3-N-Tat protected mesencephalic dopaminergic neurons against MPTP-induced toxicity.

Conclusions

JNK3-N-Tat, a JNK3-inhibitory peptide, protects dopaminergic neurons against MPP+/MPTP-induced injury by inhibiting the ASK1-JNK3 signaling pathway.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号