首页 | 本学科首页   官方微博 | 高级检索  
     


Liquid chromatographic retention behavior and enantiomeric separation of three chiral center beta-blocker drug (nadolol) using heptakis (6-azido-6-deoxy-2, 3-di-O-phenylcarbamolyted) beta-cyclodextrin bonded chiral stationary phase
Authors:Wang Xin  Ching Chi Bun
Affiliation:Department of Chemical & Environmental Engineering, National University of Singapore, Singapore. engp9191@nus.edu.sg
Abstract:Nadolol, a beta-blocker used in the management of hypertension and angina pectoris, has three chiral centers and is currently marketed as an equal mixture of its four stereoisomers. Enantiomeric separation of nadolol by high-performance liquid chromatography was studied on a column packed with novel heptakis (6-azido-6-deoxy-2, 3-di-O-phenylcarbamolyted) beta-cyclodextrin bonded chiral stationary phase. The retention behavior and resolution of nadolol enantiomers were investigated and discussed with respect to the mobile phase composition and flow rate, pH, ionic strength, and temperature. The optimal separation condition was found; the mobile phase contained 80% buffer solution (1% triethylamine acetate, pH 5.5) and 20% methanol with 0.3 ml/min mobile phase flow rate at a temperature of 20 degrees C. At the optimal conditions, resolution of three stereoisomers of nadolol was obtained with a complete separation of the most active enantiomer, (RSR)-nadolol. Thermodynamic properties including enthalpy and entropy change of binding to the CSP for the enantiomeric separation were also determined.
Keywords:enantiomeric separation  nadolol  β‐cyclodextrin  mobile phase effects  high‐performance liquid chromatography (HPLC)  enthalpy and entropy of binding to CSP
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号