首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Trophectoderm surface expression of the cell adhesion molecule cell-CAM 105 on rat blastocysts
Authors:P C Svalander  P Odin  B O Nilsson  B Obrink
Institution:Department of Human Anatomy, University of Uppsala, Sweden.
Abstract:A variety of cellular interactions is involved in the process of implantation of the mammalian embryo into the uterine tissue. Recent discoveries have demonstrated that intercellular recognition and adhesive events are governed by a class of cell surface molecules known as cell adhesion molecules (CAMs). In the present report, we have investigated the occurrence of the well-characterized cell adhesion molecule cell-CAM 105 on the surface of rat pre- and peri-implantation embryos of various stages. This was carried out by indirect immunofluorescence microscopy employing affinity-purified rabbit antibodies against cell-CAM 105. The embryonal stages investigated comprised morulae, normal day-4 blastocysts, and delayed and adhesive blastocysts obtained by using the method of experimentally delayed implantation. Cell-CAM 105 was absent in the early-morula stage, but in normal day-4 blastocysts and delayed blastocysts a specific staining for cell-CAM 105 was seen on the entire surface. However, adhesive-stage blastocysts exhibited a marked polarity with staining of the polar trophoblast cells. Scanning electron microscopy of adhesive-stage blastocysts revealed that the stronger staining of the polar region was not due to a greater number of microvilli on the polar trophoblast cells. Thus, it seems as if cell-CAM 105 is lost or masked from the surface of the mural trophoblast cells of adhesive-stage rat blastocysts. Since the mural trophoblast cells are the first to adhere to the uterine luminal epithelium during the onset of implantation and subsequently invade the uterine stroma, we suggest that the apparent downregulation of cell-CAM 105 in the mural trophoblast cells might be linked to the acquisition of trophoblast invasiveness.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号