首页 | 本学科首页   官方微博 | 高级检索  
     


Divalent-metal-dependent nucleolytic activity of Cu, Zn superoxide dismutase
Authors:Wei Jiang  Tao Shen  Yingchun Han  Qunhui Pan  Changlin Liu
Affiliation:(1) Department of Chemistry, Huazhong University of Science and Technology, Wuhan, 430074, China
Abstract:The known action of Cu, Zn superoxide dismutase (holo SOD) that converts O2 to O2 and H2O2 plays a crucial role in protecting cells from toxicity of oxidative stress. However, the overproduction of holo SOD does not result in increased protection but rather creates a variety of unfavorable effects, suggesting that too much holo SOD may be injurious to the cells. In the in vitro study, we report a finding that the holo SOD from bovine erythrocytes and its apo form possess a divalent-metal-dependent nucleolytic activity, which was confirmed by UV–vis absorption titration of calf thymus DNA (ctDNA) with the holo SOD, quenching of holo SOD intrinsic fluorescence by ctDNA, and by gel electrophoresis monitoring conversion of DNA from the supercoiled DNA to nicked and linear forms, and fragmentation of a linear λDNA. Moreover, the DNA cleavage activity was examined in detail under certain reaction conditions. The steady-state study indicates that DNA cleavage supported by both forms of SOD obeys Michaelis–Menten kinetics. On the other hand, the assays with some other proteins indicate that this new function is specific to some proteins including the holo SOD. Therefore, this study reveals that the divalent-metal-dependent DNA cleavage activity is an intrinsic property of the holo SOD, which is independent of its natural metal (copper and zinc) sites, and may provide an alternative insight into the link between SOD enzymes and neurodegenerative disorders.
Keywords:Cu, Zn superoxide dismutase  DNA cleavage  Nucleolytic activity  Divalent metal
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号