Abstract: | Phosphorothioate analogues of ATP and isomers of CrATP and CrADP were used to examine the nucleotide stereoselectivity of formyltetrahydrofolate synthetase from procaryotic and eucaryotic sources. Substrate activity of the thio-ATP analogues increased as the site of sulfur substitution was changed from the gamma to the alpha position. Thus, adenine nucleotide analogues substituted with sulfur at an alpha nonbridging position (ATP alpha S isomers) were the most active, and ATP gamma S was inactive. When Mg2+ was used as the divalent cation, both enzymes showed a clear preference (higher V/Km value) for the Sp isomer of ATP beta S although the magnitude of the preference was greater with the bacterial enzyme. With Cd2+ as the divalent cation the Rp isomer was preferred, but the difference was greater with the yeast enzyme. Both (Sp)-MgATP beta S and (Rp)-CdATP beta S have the delta or right-hand screw sense configuration of the metal chelate ring. The reversal of stereoselectivity when the cation was changed indicates that the metal ion is coordinated to the beta-phosphate group. No stereoselectivity was observed when ATP alpha S isomers were used in the presence of Mg2+ or Cd2+, suggesting that the metals are not coordinated to the alpha-phosphate. ATP beta S was also found to be a competitive inhibitor of MgATP and CdATP, and the lowest Ki values were obtained with the lambda screw sense isomers. The screw sense isomers of bidentate CrATP exhibited no detectable substrate activity but were competitive inhibitors of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS) |