首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Self-organized nanogels responding to tumor extracellular pH: pH-dependent drug release and in vitro cytotoxicity against MCF-7 cells
Authors:Na Kun  Lee Eun Seong  Bae You Han
Institution:Division of Biotechnology, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Korea.
Abstract:The principal objective of this study was to fabricate doxorubicin-loaded self-organized nanogels composed of hydrophobized pullulan (PUL)-Nalpha-Boc-L-histidine (bHis) conjugates. Their responses to tumor extracellular pH (pHe) were determined, and they were also evaluated with regard to their anticancer efficacy against breast cancer cell lines (MCF-7). bHis was grafted to a PUL-deoxycholic acid (DO) conjugate (PUL-DO) via an ester linkage. PUL-DO/bHis conjugates with two different degrees of bHis substitutions (PUL-DO/bHis36 and PUL-DO/bHis78) were synthesized. PUL-DO/bHis nanogels formed via dialysis at a pH of 8.5 evidenced larger particle sizes (<140 nm) and lower critical aggregation concentrations (CACs) than did the PUL-DO nanogels (90 nm). The pH-dependent CAC of PUL-DO/bHis78 changed dramatically, from 1.2 microg/mL at pH 8.5, to 10 at 7.0, and to 660 at 6.2. A similar tendency in pH-dependent size was also noted. The ionization of the imidazole ring in bHis is principally responsible for pH dependency. The bHis moieties function as a switching tool responding to external pH. Doxorubicin (DOX)-loaded nanogels were assessed for pH-dependent releasing kinetics. The release rate of DOX from the PUL-DO/bHis78 nanogels increased significantly with reductions in pH. This resulted in increased cytotoxicity (30% cell viability at a dose of 10 microg/mL DOX equivalent) against sensitive MCF-7 cells at a pH of 6.8 and low cytotoxicity at pH 7.4 (65% cell viability at an identical dose). The results show that PUL-DO/bHis nanogels may potentially be employed as anti-tumor drug carriers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号