首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Creep and stress relaxation of human red cell membrane
Authors:Thomas M Fischer
Institution:1.Department of Physiology,RWTH Aachen University,Aachen,Germany;2.Laboratory for Red Cell Rheology,Herzogenrath,Germany
Abstract:In contrast to most mechanical properties of the red cell, experimental information on stress relaxation (SR) of the membrane skeleton is scarce. On the other hand, many postulates or assumptions as to the value of the characteristic time of SR \((\tau _{\mathrm{SR}})\) can be found in the literature. Here, an experiment is presented that allows measurement of \(\tau _{\mathrm{SR}}\) up to values of about 10 h. The membrane skeleton was deformed passively by changing the spontaneous curvature of the bilayer thus transforming the natively biconcave red cells into echinocytes. This shape and the concomitant deformation of the skeleton were kept up to 4 h by incubation at 37 ℃. During this period, no plastic deformation (creep) was observed. After the incubation, the spontaneous curvature was returned to normal. The resulting shape was smooth showing no remnants of the echinocytic shape. Both observations indicate \(\tau _{\mathrm{SR}}\gtrapprox \) 10 h. This result is in gross disagreement to postulates or assumptions existing in the literature.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号