首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Investigation of the role of cytochrome P450 2B4 active site residues in substrate metabolism based on crystal structures of the ligand-bound enzyme
Authors:Hernandez Cynthia E  Kumar Santosh  Liu Hong  Halpert James R
Institution:Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031, USA.
Abstract:Based on the X-ray crystal structures of 4-(4-chlorophenyl)imidazole (4-CPI)- and bifonazole (BIF)-bound P450 2B4, eight active site mutants at six positions were created in an N-terminal modified construct termed 2B4dH and characterized for enzyme inhibition and catalysis. I363A showed a >4-fold decrease in differential inhibition by BIF and 4-CPI (IC(50,BIF)/IC(50,4-CPI)). F296A, T302A, I363A, V367A, and V477A showed a 2-fold decreased k(cat) for 7-ethoxy-4-trifluoromethylcoumarin O-deethylation, whereas V367A and V477F showed an altered K(m). T302A, V367L, and V477A showed >4-fold decrease in total testosterone hydroxylation, whereas I363A, V367A, and V477F showed altered stereo- and regioselectivity. Interestingly, I363A showed a 150-fold enhanced k(cat)/K(m) with testosterone, and yielded a new metabolite. Furthermore, testosterone docking into three-dimensional models of selected mutants based on the 4-CPI-bound structure suggested a re-positioning of residues 363 and 477 to yield products. In conclusion, our results suggest that the 4-CPI-bound 2B4dH/H226Y crystal structure is an appropriate model for predicting enzyme catalysis.
Keywords:Cytochrome P450  Structure-function relationships  Site-directed mutagenesis  Enzyme catalysis and inhibition  P450 2B4 crystal structure
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号