首页 | 本学科首页   官方微博 | 高级检索  
     


Independent Regulation of Basal Neurotransmitter Release Efficacy by Variable Ca2+ Influx and Bouton Size at Small Central Synapses
Authors:Yaroslav S. Ermolyuk  Felicity G. Alder  Christian Henneberger  Dmitri A. Rusakov  Dimitri M. Kullmann  Kirill E. Volynski
Affiliation:UCL Institute of Neurology, University College London, United Kingdom;ICM - Institut du Cerveau et de la Moelle épinière Hôpital Pitié-Salpêtrière 47, bd de l''Hôpital, France
Abstract:The efficacy of action potential evoked neurotransmitter release varies widely even among synapses supplied by the same axon, and the number of release-ready vesicles at each synapse is a major determinant of this heterogeneity. Here we identify a second, equally important, mechanism for release heterogeneity at small hippocampal synapses, the inter-synaptic variation of the exocytosis probability of release-ready vesicles. Using concurrent measurements of vesicular pool sizes, vesicular exocytosis rates, and presynaptic Ca2+ dynamics, in the same small hippocampal boutons, we show that the average fusion probability of release-ready vesicles varies among synapses supplied by the same axon with the size of the spike-evoked Ca2+ concentration transient. We further show that synapses with a high vesicular release probability exhibit a lower Ca2+ cooperativity, arguing that this is a direct consequence of increased Ca2+ influx at the active zone. We conclude that variability of neurotransmitter release under basal conditions at small central synapses is accounted for not only by the number of release-ready vesicles, but also by their fusion probabilities, which are set independently of bouton size by variable spike-evoked presynaptic Ca2+ influx.

Author Summary

Synaptic transmission underlies information transfer among neurons in the brain. The probability that a synapse will release neurotransmitter in response to an action potential varies widely, even among synapses supplied by the same axon. The molecular mechanisms underlying this heterogeneity remain poorly understood. At the level of single synapses, release efficacy is determined largely by two factors: (i) the number of neurotransmitter-containing vesicles ready to be released, and (ii) by the fusion probabilities of these vesicles. By using novel imaging techniques at individual hippocampal presynaptic boutons in culture, we distinguish two independent sources of variability of release probability in small central synapses. First, we find differences in the number of releasable vesicles, and second, we find differences in the exocytosis probability of individual vesicles. To our knowledge, this is the first direct experimental demonstration that the fusion probability of release-ready vesicles is variable among synapses supplied by a single axon, and contributes roughly as much to the overall variability in release probability as does the number of release-ready vesicles.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号