首页 | 本学科首页   官方微博 | 高级检索  
     


The Natural Antimicrobial Carvacrol Inhibits Campylobacter jejuni Motility and Infection of Epithelial Cells
Authors:Lieke B. van Alphen  Sara A. Burt  Andreas K. J. Veenendaal  Nancy M. C. Bleumink-Pluym  Jos P. M. van Putten
Affiliation:1. Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.; 2. Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.; Institut National de la Recherche Agronomique, France,
Abstract:

Background

Natural compounds with anti-microbial properties are attractive reagents to reduce the use of conventional antibiotics. Carvacrol, the main constituent of oregano oil, inhibits the growth of a variety of bacterial foodborne pathogens. As concentrations of carvacrol may vary in vivo or when used in animal feed, we here investigated the effect of subinhibitory concentrations of the compound on major virulence traits of the principal bacterial foodborne pathogen Campylobacter jejuni.

Methods/Principal Findings

Motility assays revealed that subinhibitory concentrations of carvacrol inhibited the motility of C. jejuni without affecting bacterial growth. Immunoblotting and electron microscopy showed that carvacrol-treated C. jejuni still expressed flagella. The loss of motility was not caused by reduced intracellular ATP levels. In vitro infection assays demonstrated that subinhibitory concentrations of carvacrol also abolished C. jejuni invasion of human epithelial cells. Bacterial uptake of invasive Escherichia coli was not blocked by carvacrol. Exposure of C. jejuni to carvacrol prior to infection also inhibited cellular infection, indicating that the inhibition of invasion was likely caused by an effect on the bacteria rather than inhibition of epithelial cell function.

Conclusions/Significance

Bacterial motility and invasion of eukaryotic cells are considered key steps in C. jejuni infection. Our results indicate that subinhibitory concentrations of carvacrol effectively block these virulence traits by interfering with flagella function without disturbing intracellular ATP levels. These results broaden the spectrum of anti-microbial activity of carvacrol and support the potential of the compound for use in novel infection prevention strategies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号