Carbon allocation and carbon transfer between t Betula papyrifera and t Pseudotsuga menziesii seedlings using a 13C pulse-labeling method |
| |
Authors: | Suzanne W. Simard Daniel M. Durall Melanie D. Jones |
| |
Affiliation: | (1) British Columbia Ministry of Forests, Kamploops Forest Region, 515 Columbia Street, Kamloops, B.C., V2C 2T7, Canada;(2) Department of Biology, Okanagan University College, 3333 College Way, Kelowna, B.C., V1V 1V7, Canada |
| |
Abstract: | Here we describe a simple method for pulse-labeling tree seedlings with 13CO2(gas), and then apply the method in two related experiments: t (i) comparison of carbon allocation patterns between t Betula papyrifera Marsh. and t Pseudotsuga menziesii (Mirb.) Franco, and t (ii) measurement of one-way belowground carbon transfer from t B. papyrifera to t P. menziesii. Intraspecific carbon allocation patterns and interspecific carbon transfer both influence resource allocation, and consequently development, in mixed communities of t B. papyrifera and t P. menziesii.In preparation for the two experiments, we first identified the appropriate 13CO2(gas) pulse-chase regime for labeling seedlings: a range of pulse (100-mL and 200-mL 99 atom%13 CO2(gas)) and chase (0, 3 and 6 d) treatments were applied to one year-old t B. papyrifera and t P. menziesii seedlings. The amount of 13CO2 fixed immediately after 1.5 h exposure was greatest for both t B. papyrifera (40.8 mg excess 13C) and t P. menziesii (22.9 mg excess 13C) with the 200-mL pulse, but higher 13C loss and high sample variability resulted in little difference in excess13 C content between pulse treatments after 3 d for either species. The average excess 13C root/shoot ratio of t B. papyrifera and t P. menziesii changed from 0.00 immediately following the pulse to 0.61 and 0.87 three and six days later, which reflected translocation of 75% of fixed isotope out of foliage within 3 d following the pulse and continued enrichment in fine roots over 6 d. Based on these results, the 100-mL CO2(gas) and 6-d chase were considered appropriate for the carbon allocation and belowground transfer experiments.In the carbon allocation experiment, we found after 6 d that t B. papyrifera allocated 49% (average 9.5 mg) and t P. menziesii 41% (average 5.8 mg) of fixed isotope to roots, of which over 55% occurred in fine roots in both species. Species differences in isotope allocation patterns paralleled differences in tissue biomass distribution. The greater pulse labeling efficiency of t B. papyrifera compared to t P. menziesii was associated with its two-fold and 13- fold greater leaf and whole seedling net photosynthetic rates, respectively, 53% greater biomass, and 35% greater root/shoot ratio.For the carbon transfer experiment, t B. papyrifera and t P. menziesii were grown together in laboratory rootboxes, with their roots intimately mingled. A pulse of 100 mL13 CO2(gas) was applied to paper birch and one-way transfer to neighboring t P. menziesii was measured after 6 d. Of the excess 13C fixed by t B. papyrifera, 4.7% was transferred to neighboring t P. menziesii, which distributed the isotope evenly between roots and shoots. Of the isotope received by t P. menziesii, we estimated that 93% was taken up through belowground pathways, and the remaining 7% taken up by foliage as13 CO2(gas) respired by t B. papyrifera shoots. These two experiments indicate that t B. papyrifera fixes more total carbon and allocates a greater proportion to its root system than does t P. menziesii, giving it a competitive edge in resource gathering; however, below-ground carbon sharing is of sufficient magnitude that it may help ensure co-existence of the two species in mixed communities. |
| |
Keywords: | t Betula papyrifera (paper birch) 13C pulse-labeling carbon allocation carbon transfer t Pseudotsuga menziesii (Douglas-fir) |
本文献已被 SpringerLink 等数据库收录! |
|