Neurally mediated gastric mucosal damage in hypophysectomized rats. |
| |
Authors: | L E Hierlihy J L Wallace A V Ferguson |
| |
Affiliation: | Department of Physiology, Queen's University, Kingston, Ont., Canada. |
| |
Abstract: | The role of the pituitary hormones in the development of neurally mediated gastric mucosal damage was examined in both normal and hypophysectomized urethane-anaesthetized male Sprague-Dawley rats. Gastric mucosal damage was elicited either by electrical stimulation of intact vagal nerves or by electrical stimulation in the paraventricular nucleus. Macroscopic damage was scored following the stimulation period and samples of the stomach were fixed for histological assessment. Damage scores were assigned based on a 0 (normal) to 3 (severe) scale. Control experiments in which the vagi were not stimulated did not result in any significant gastric damage in either normal (0.56) or sham surgery (0.14) animals, whereas hypophysectomized animals were observed to have significant damage (1.44, p < 0.05). Stimulation of the vagi in hypophysectomized animals resulted in damage that was not significantly different compared with the hypophysectomized control animals (1.25, p > 0.05). In normal animals, stimulation of vagal nerves resulted in mean damage scores of 2.00, values that were not significantly different from those observed in hypophysectomized animals (1.25, p > 0.05). Similarly, stimulation in the paraventricular nucleus of hypophysectomized animals resulted in gastric lesions (2.00) that were not significantly different from those observed in normal animals (1.91, p > 0.05). These data suggest that such neurally mediated gastric damage does not depend upon neurosecretory projections to the pituitary gland, but that the maintenance of an intact gastric mucosa under normal conditions requires the presence of pituitary hormones. |
| |
Keywords: | |
|
|