Homologous regulation of melanocortin-1 receptor (MC1R) expression in melanoma tumor cells in vivo |
| |
Authors: | Froidevaux Sylvie Eberle Alex N |
| |
Affiliation: | Laboratory of Endocrinology, Department of Research, University Hospital and University Children's Hospital, CH-4031 Basel, Switzerland. sylvie.froidevaux@unibas.ch |
| |
Abstract: | As G protein-coupled receptors (GPCRs) are the target of numerous signaling molecules, including about half of the therapeutic drugs currently used, it is important to understand the consequences of homologous (ligand-induced) receptor regulation. Continuous exposure of GPCRs to agonist in vitro most frequently results in receptor down-regulation, but receptor up-regulation may occur as well. These phenomena are expected to play a role in the physiological adaptation to endogenous ligands and also in the response to repetitive administration of drugs in the clinic. However, there is little information on homologous regulation of GPCRs in vivo. Here, we report on the regulation of melanocortin-1 receptor (MC1R) expression in melanoma cells implanted into mice. Two melanoma cell lines were investigated, D10 and B16F1, which in vitro had previously been shown to undergo homologous receptor up- and down-regulation, respectively. After implantation into mice and exposure to the natural MC1R agonist alpha-melanocyte-stimulating hormone (alpha-MSH), cell-surface MC1R expression was evaluated by competition binding experiments in tumor membrane preparations. In B 16F1 cells, a single injection of 50 to 500 microg alpha-MSH induced a rapid but moderate dose-dependent MC1R down-regulation which could be totally reverted within 16-24 h. By continuous administration of alpha-MSH via osmotic minipumps, MC1R down-regulation was considerably amplified and reached the level observed in vitro, demonstrating that prolonged receptor interaction was necessary to induce a maximal effect in vivo. Similar results were obtained in vitro, which demonstrates that homologous MC1R regulation in B16F1 cells is essentially independent of the physiological environment. In D10 cells, however, up-regulation could not be reproduced in vivo, suggesting that MC1R up-regulation is more dependent on the physiological environment. These results demonstrate the importance of in vivo receptor regulation studies, in particular in view of the potential use of MC1R as a target for melanoma therapy. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|