首页 | 本学科首页   官方微博 | 高级检索  
     


Photoelectron imaging of viruses and DNA: evaluation of substrates by unidirectional low angle shadowing and photoemission current measurements.
Authors:G B Birrell   D L Habliston     O H Griffith
Affiliation:Institute of Molecular Biology, University of Oregon, Eugene 97403.
Abstract:Photoelectron imaging (photoelectron emission microscopy, PEM or PEEM) is a promising high resolution surface-sensitive technique for biophysical studies. At present, image quality is often limited by the underlying substrate. For photoelectron imaging, the substrate must be electrically conductive, low in electron emission, and relatively flat. A number of conductive substrate materials with relatively low electron emission were examined for surface roughness. Low angle, unidirectional shadowing of the specimens followed by photoelectron microscopy was found to be an effective way to test the quality of substrate surfaces. Optimal results were obtained by depositing approximately 0.1 nm of platinum-palladium (80:20) at an angle of 3 degrees. Among potential substrates for photoelectron imaging, silicon and evaporated chromium surfaces were found to be much smoother than evaporated magnesium fluoride, which initially appeared promising because of its very low electron emission. The best images were obtained with a chromium substrate coated with a thin layer of dextran derivatized with spermidine, which facilitated the spreading and adhesion of biomolecules to the surfaces. Making use of this substrate, improved photoelectron images are reported for tobacco mosaic virus particles and DNA-recA complexes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号