首页 | 本学科首页   官方微博 | 高级检索  
     


slr1923 of Synechocystis sp. PCC6803 is essential for conversion of 3,8-divinyl(proto)chlorophyll(ide) to 3-monovinyl(proto)chlorophyll(ide)
Authors:Islam M Rafiqul  Aikawa Shimpei  Midorikawa Takafumi  Kashino Yasuhiro  Satoh Kazuhiko  Koike Hiroyuki
Affiliation:Department of Life Science, Graduate School of Life Science, University of Hyogo, Ako, Hyogo, Japan.
Abstract:The deduced amino acid sequence of an slr1923 gene of Synechocystis sp. PCC6803 is homologous to archaean F(420)H(2) dehydrogenase, which acts as a soluble subcomplex of reduced nicotinamide adenine dinucleotide dehydrogenase complex I. In this study, the gene was inactivated and characteristics of the mutant were analyzed. The mutant grew slower than the wild type under 100 microE m(-2) s(-1) but did not grow under high light intensity (300 microE m(-2) s(-1)). The cellular content of chlorophyll was lower in the mutant, and the absorption spectrum showed a shift in the absorption peak of the Soret band to a longer wavelength by about 10 nm compared with the wild type. It was found, by high-performance liquid chromatography analysis, that the retention time of chlorophyll of the mutant is shorter than that of the wild type and that the peak wavelength of the Soret band was also shifted to a longer wavelength by 11 nm. Proton nuclear magnetic resonance analysis of the chlorophyll of the mutant revealed that the ethyl group of position 8 of ring B is replaced with a vinyl group. The spectrum indicates that the chlorophyll of the mutant is not a normal (3-vinyl)chlorophyll a but a 3,8-divinylchlorophyll a. These results strongly suggest that the Slr1923 protein is essential for the conversion from divinylchlorophyll(ide) to normal chlorophyll(ide). We thus designate this gene cvrA (a gene indispensable for cyanobacterial vinyl reductase).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号