首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heme transport and detoxification in nematodes: subproteomics evidence of differential role of glutathione transferases
Authors:Perally Samïrah  Lacourse E James  Campbell Alison M  Brophy Peter M
Institution:Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DA, United Kingdom. samirah.perally2006@alumni.aber.ac.uk
Abstract:In contrast to their mammalian hosts, parasitic nematodes are heme auxotrophs and require pathways for the uptake and transport of exogenous heme for incorporation into hemoproteins. Phase II detoxification Nu-class glutathione transferase (GST) proteins have a proposed role as heme-binding ligandins in parasitic nematodes. The genome-verified free-living nematode Caenorhabditis elegans also cannot synthesize heme and is an ideal functional genomics model to delineate the role of individual nematode GSTs in heme trafficking and heme detoxification. In this study, C. elegans was exposed to externally controlled heme concentrations ranging from 20-fold suboptimal growth levels to 10-fold supra-optimal growth levels to mimic fluctuations in blood- and tissue-feeding parasitic cousins from the same nematode group. A new heme-responsive GST (GST-19) was identified by subproteomics approaches. Functional characterization of this and two other C. elegans GSTs revealed that they all have high affinity for heme compounds similar to mammalian soluble heme carrier proteins such as HBP23 ( K d approximately 10 (-8) M). In the genomics-predicted absence of orthologous mammalian soluble heme-binding proteins in nematodes, we propose that Nu-class GSTs are candidates in the cellular processing of heme compounds. Toxic heme binding may be coupled to enzymatic protection from its breakdown as several GSTs possess glutathione peroxidase activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号