首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide inhibition decreases bleomycin-detectable iron in spleen,bone marrow cells and heart but not in liver in exercise rats
Authors:Xiao  De Sheng  Ho  Kwok Ping  Qian  Zhong Ming
Institution:(1) Laboratory of Iron Metabolism, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong;(2) Department of Physiology, Zhenjiang Medical College, PRC;(3) Institute of Neurobiology and Neuropharmacology, Hebei Normal University, Shijiazhuang, Hebei, PRC
Abstract:The possible role of nitric oxide on the exercise-induced changes in bleomycin-detectable iron (BDI) in the liver, spleen, bone marrow cells and heart was investigated. Female Sprague—Dawley rats were randomly assigned to four groups: S1 (Sedentary), S2 (Sedentary + L-NAME N-nitro-L-arginine methyl ester]), E1 (Exercise) and E2 (Exercise + L-NAME). Animals in the E1 and E2 swam for 2 h/day for 3 months. L-NAME in the drinking water (1 mg/ml) was administrated to rats in the S2 and E2 groups for the same period. At the end of the 3rd month, nitrite and nitrate (NOx), BDI and non-heme iron (NHI) contents in the liver, spleen, bone marrow cells and heart were measured. The ratio of BDI/NHI was calculated. The exercise induced a significant increase in NOx and BDI contents and/or BDI/NHI ratio in the spleen, bone morrow cells and heart. Treatment with L-NAME, an inhibitor of NOS, led to a significant decrease in NOx and an increase in BDI levels and BDI/NHI ratios in these tissues. The correlative analysis showed that there is significantly positive correlation between NOx levels and BDI contents and/or BDI/NHI ratios in the spleen, bone marrow cells and heart. These results suggest that the increased nitric oxide might be one of the reasons leading to the increased BDI levels in these tissues in the exercised rats. In contrast to the above tissues, in the liver, exercise led to a significant decrease rather than increase in BDI levels and BDI/NHI ratios with a significant increase in NOx contents. Treatment with L-NAME led to a significant increase in BDI levels and BDI/NHI ratios and a decrease in NOx contents in the tissue. These findings plus the results reported by others imply that nitric oxide might have an inhibitory effect on BDI in the liver.
Keywords:nitrite and nitrate (NOx)  nitric oxide (NO)  bleomycin-detectable iron (BDI)  non-heme iron (NHI)  L-NAME  exercise
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号