首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cre/lox system and PCR-based genome engineering in Bacillus subtilis
Authors:Yan Xin  Yu Hao-Jie  Hong Qing  Li Shun-Peng
Institution:Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu 210095, People's Republic of China.
Abstract:We have developed a fast and accurate method to engineer the Bacillus subtilis genome that involves fusing by PCR two flanking homology regions with an antibiotic resistance gene cassette bordered by two mutant lox sites (lox71 and lox66). The resulting PCR products were used directly to transform B. subtilis, and then transient Cre recombinase expression in the transformants was used to recombine lox71 and lox66 into a double-mutant lox72 site, thereby excising the marker gene. The mutation process could also be accomplished in 2 days by using a strain containing a cre isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible expression cassette in the chromosome as the recipient or using the lox site-flanked cassette containing both the cre IPTG-inducible expression cassette and resistance marker. The in vivo recombination efficiencies of different lox pairs were compared; the lox72 site that remains in the chromosome after Cre recombination had a low affinity for Cre and did not interfere with subsequent rounds of Cre/lox mutagenesis. We used this method to inactivate a specific gene, to delete a long fragment, to realize the in-frame deletion of a target gene, to introduce a gene of interest, and to carry out multiple manipulations in the same background. Furthermore, it should also be applicable to large genome rearrangement.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号