首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Density-functional investigation on the mechanism of H-atom abstraction by lipoxygenase
Authors:Nicolai Lehnert  Edward I Solomon
Institution:Department of Chemistry, Stanford University, Rothway and Campus Drive, Stanford, CA 94305-5080, USA.
Abstract:Using experimentally calibrated density functional calculations on models of the active site of soybean lipoxygenase 1 (SLO-1), insight has been obtained into the coordination flexibility of the iron active site and its molecular mechanism of catalysis. The ferrous form of SLO-1 shows a variation in coordination number in solution that is related to a weakly coordinating Asn694 ligand. From the calculations it is determined that the weak Fe-O(694) bond associated with this coordination flexibility is due to a sideways tilted geometry of Asn694 that is imposed on the site by the protein. Release of this constraint (by altering the hydrogen bonding network) leads to a pure six-coordinate site. In contrast, the ferric form of the enzyme stays five-coordinate. In this case, deprotonation of a coordinated water gives a strong hydroxo donor in the cis position to Asn694, weakening the Fe-O(694) bond. Hence, Asn694 is a stronger ligand to the reduced relative to the oxidized site. Using these experimentally calibrated models, the reaction energy for H-atom transfer in SLO-1 has been calculated to be about -18 kcal/mol. The observed change in coordination number going from five-coordinate in ferric to six-coordinate in ferrous SLO-1 increases the reduction potential of the iron active site. Hence, the protein adjusts the active site for optimal reactivity. Analysis of the electronic structure along the reaction coordinate shows that the H-atom transfer in SLO-1 actually corresponds to a proton-coupled electron transfer (PCET). The transferred electron does not localize on the proton, but tunnels directly from the substrate to the ferric active site in a concerted proton tunneling-electron tunneling (PTET) process. The covalently linked Fe-O-H-C bridge in the transition state lowers the energy barrier and provides an efficient superexchange pathway for this tunneling. The thermal barrier for the PTET process is estimated from the calculations to be about +15 kcal/mol including zero-point energy corrections. This corresponds to a thermal reaction rate of k(therm) approximately 1 s(-1). In comparison, the rate of proton tunneling can be as high as 2 x 10(9) s(-1) under these conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号