首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of adenosine receptor affinity and intrinsic efficacy in adenine nucleosides substituted at the 2-position
Authors:Ohno Michihiro  Gao Zhan-Guo  Van Rompaey Philippe  Tchilibon Susanna  Kim Soo-Kyung  Harris Brian A  Gross Ariel S  Duong Heng T  Van Calenbergh Serge  Jacobson Kenneth A
Institution:Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), DHHS, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892-0810, USA.
Abstract:We studied the structural determinants of binding affinity and efficacy of adenosine receptor (AR) agonists. Substituents at the 2-position of adenosine were combined with N(6)-substitutions known to enhance human A(3)AR affinity. Selectivity of binding of the analogues and their functional effects on cAMP production were studied using recombinant human A(1), A(2A), A(2B), and A(3)ARs. Mainly sterically small substituents at the 2-position modulated both the affinity and intrinsic efficacy at all subtypes. The 2-cyano group decreased hA(3)AR affinity and efficacy in the cases of N(6)-(3-iodobenzyl) and N(6)-(trans-2-phenyl-1-cyclopropyl), for which a full A(3)AR agonist was converted into a selective antagonist; the 2-cyano-N(6)-methyl analogue was a full A(3)AR agonist. The combination of N(6)-benzyl and various 2-substitutions (chloro, trifluoromethyl, and cyano) resulted in reduced efficacy at the A(1)AR. The environment surrounding the 2-position within the putative A(3)AR binding site was explored using rhodopsin-based homology modeling and ligand docking.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号