首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Loop movement and catalysis in creatine kinase
Authors:Wang Pan-Fen  Flynn Allen J  McLeish Michael J  Kenyon George L
Institution:College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, USA.
Abstract:Recently the crystal structure of creatine kinase from Torpedocalifornica was determined to 2.1 A. The dimeric structure revealed two different forms in the unit cell: one monomer was bound to a substrate, MgADP, and the other monomer was bound to a transition-state analogue complex composed of MgADP, nitrate and creatine. The most striking difference between the structures is the movement of two loops (comprising residues 60-70 and residues 323-333) into the active site in the transition state structure. This loop movement effectively occludes the active site from solvent, and the loops appear to be locked into place by a salt bridge formed between His66 and Asp326. His66 is of particular interest as it is located within a PGHP motif conserved in all creatine kinases but not found in other guanidino kinases. We have carried out alanine-scanning mutagenesis of each of the residues in the PGHP motif and determined that only the His66 plays a significant role in the creatine kinase reaction. Although neither residue interacts directly with the substrate, the interaction His66 and Asp326 appears to be important in providing the precise alignment of substrates necessary for phosphoryl group transfer. Finally, it is clear that neither His66 nor Asp326 are responsible for the pKs observed in the pH-rate profile for HMCK.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号