首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity
Authors:Wang S  Yue H  Derin R B  Guggino W B  Li M
Institution:Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Abstract:The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes a chloride channel protein that belongs to the superfamily of ATP binding cassette (ABC) transporters. Phosphorylation by protein kinase A in the presence of ATP activates the CFTR-mediated chloride conductance of the apical membranes. We have identified a novel hydrophilic CFTR binding protein, CAP70, which is also concentrated on the apical surfaces. CAP70 consists of four PDZ domains, three of which are capable of binding to the CFTR C terminus. Linking at least two CFTR molecules via cytoplasmic C-terminal binding by either multivalent CAP70 or a bivalent monoclonal antibody potentiates the CFTR chloride channel activity. Thus, the CFTR channel can be switched to a more active conducting state via a modification of intermolecular CFTR-CFTR contact that is enhanced by an accessory protein.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号