首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Primary stress response induced by different elements is mediated through auxin signalling in barley root tip
Authors:Veronika Zelinová  Aster Alemayehu  Beáta Bo?ová  Jana Huttová  Igor Mistrík  Ladislav Tamás
Institution:1. Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
Abstract:Short-term exposure (15 min) of barley roots to different chemical elements revealed that Cd, Cu, Hg and Pb were the most toxic ones causing a marked root growth inhibition even at µM concentrations. Gd, La, Al, Cr, As, Zn, Ni and Se inhibited root growth to a similar extent only at mM concentrations. Despite the high 20 mM concentration, Co caused only a slight, while Mn, Mg or Ca did not evoke any root growth inhibition. Elements at concentrations inhibiting root growth caused a considerable accumulation of indole-3-acetic acid in the root apex. While Cr, As and Zn inhibited, Cd, Cu, Hg, Pb, Gd, La and Al markedly stimulated the generation of reactive oxygen species in the beginning of differentiation zone. Auxin signalling inhibitor alleviated or prevented root growth inhibition, reactive oxygen species generation and the stimulation of lipoxygenase and glutathione peroxidase activity by various elements, indicating a key role of auxin signalling in the stress response of barley root tip. On the other hand, it did not affect or even had an additive effect on dehydroascorbate reductase and ascorbic acid oxidase activity in combination with different elements. Our results indicate that the primary response of barley roots to the presence of various chemical elements during the short-term treatment is not a specific but rather a general adaptive stress response enabling the plant to survive adverse conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号