首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium activates and inactivates a photoreceptor soma potassium current.
Authors:D L Alkon and  M Sakakibara
Abstract:Light-induced currents were measured with a two-microelectrode voltage clamp of type B photoreceptor somata, which had been isolated by axotomy from all synaptic interactions as well as from all membranes capable of generating impulse activity. In artificial seawater (ASW), light elicited a transient early inward current, INa+, which depended on Na+o and had a linear current-voltage relation and an extrapolated reversal potential of 30-40 mV (absolute). In 0-Na+ ASW, light elicited a transient short-latency outward current that dependent on K+o, increased exponentially with more positive voltages (greater than or equal to -40 mV), and reversed at -70 to -75 mV. This outward current was not blocked by Ca++ channel blockers (e.g., Cd++, Co++) or substitution of Ba++o, for Ca++o, but was reduced by iontophoretic injection of EGTA. In both ASW and 0-Na+ ASW, light also elicited a delayed, apparently inward current, which was associated with a decreased conductance, depended on K+o, increased exponentially with more positive voltages (greater than or equal to -40 mV), reversed at the equilibrium potential for K+ flux in elevated K+o was eliminated by substitution of Ba++o for Ca++o, and was greatly reduced by Cd++o or Co++o. Thus, light elicited an early Ca++-dependent K+ current, IC, and a prolonged decrease of IC. Iontophoretic injection of Ca++ through a third microelectrode caused prolonged reduction of both IC and the light-induced decrease of IC, but did not alter ICa++ or the current-voltage relation of IC. Ruthenium red (1 microM) in the external medium caused a prolongation of the light-induced decrease of IC. Iontophoretic injection of EGTA often eliminated the light-induced IC decrease while decreasing peak IC (during depolarizing steps to -5 or 0 mV) by less than one-half. EGTA injection, on the average, did not affect steady state IC but reduced the light-induced decrease of steady state IC to approximately one-third of its original magnitude. The prolonged IC decrease, elicited by dim light in the absence of light-induced IC or INa+, was more completely eliminated by EGTA injection. It was concluded that light, in addition to inducing a transient inward Na+ current, causes both a transient increase and a prolonged decrease of IC via elevation of Ca++i.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号