首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Forest tree growth is linked to mycorrhizal fungal composition and function across Europe
Authors:Mark A Anthony  Thomas W Crowther  Sietse van der Linde  Laura M Suz  Martin I Bidartondo  Filipa Cox  Marcus Schaub  Pasi Rautio  Marco Ferretti  Lars Vesterdal  Bruno De Vos  Mike Dettwiler  Nadine Eickenscheidt  Andreas Schmitz  Henning Meesenburg  Henning Andreae  Frank Jacob  Hans-Peter Dietrich  Peter Waldner  Arthur Gessler  Beat Frey  Oliver Schramm  Pim van den Bulk  Arjan Hensen  Colin Averill
Abstract:Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.Subject terms: Microbial ecology, Forest ecology, Fungal ecology, Biogeochemistry
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号