首页 | 本学科首页   官方微博 | 高级检索  
     


The nuclease activity of DNA2 promotes exonuclease 1–independent mismatch repair
Authors:Lyudmila Y. Kadyrova  Basanta K. Dahal  Vaibhavi Gujar  James M. Daley  Patrick Sung  Farid A. Kadyrov
Affiliation:1.Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA;2.Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
Abstract:The DNA mismatch repair (MMR) system is a major DNA repair system that corrects DNA replication errors. In eukaryotes, the MMR system functions via mechanisms both dependent on and independent of exonuclease 1 (EXO1), an enzyme that has multiple roles in DNA metabolism. Although the mechanism of EXO1-dependent MMR is well understood, less is known about EXO1-independent MMR. Here, we provide genetic and biochemical evidence that the DNA2 nuclease/helicase has a role in EXO1-independent MMR. Biochemical reactions reconstituted with purified human proteins demonstrated that the nuclease activity of DNA2 promotes an EXO1-independent MMR reaction via a mismatch excision-independent mechanism that involves DNA polymerase δ. We show that DNA polymerase ε is not able to replace DNA polymerase δ in the DNA2-promoted MMR reaction. Unlike its nuclease activity, the helicase activity of DNA2 is dispensable for the ability of the protein to enhance the MMR reaction. Further examination established that DNA2 acts in the EXO1-independent MMR reaction by increasing the strand-displacement activity of DNA polymerase δ. These data reveal a mechanism for EXO1-independent mismatch repair.

The mismatch repair (MMR) system has been conserved from bacteria to humans (1, 2). It promotes genome stability by suppressing spontaneous and DNA damage-induced mutations (1, 3, 4, 5, 6, 7, 8, 9, 10, 11). The key function of the MMR system is the correction of DNA replication errors that escape the proofreading activities of replicative DNA polymerases (1, 4, 5, 6, 7, 8, 9, 10, 12). In addition, the MMR system removes mismatches formed during strand exchange in homologous recombination, suppresses homeologous recombination, initiates apoptosis in response to irreparable DNA damage caused by several anticancer drugs, and contributes to instability of triplet repeats and alternative DNA structures (1, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18). The principal components of the eukaryotic MMR system are MutSα (MSH2-MSH6 heterodimer), MutLα (MLH1-PMS2 heterodimer in humans and Mlh1-Pms1 heterodimer in yeast), MutSβ (MSH2-MSH3 heterodimer), proliferating cell nuclear antigen (PCNA), replication factor C (RFC), exonuclease 1 (EXO1), RPA, and DNA polymerase δ (Pol δ). Loss-of-function mutations in the MSH2, MLH1, MSH6, and PMS2 genes of the human MMR system cause Lynch and Turcot syndromes, and hypermethylation of the MLH1 promoter is responsible for ∼15% of sporadic cancers in several organs (19, 20). MMR deficiency leads to cancer initiation and progression via a multistage process that involves the inactivation of tumor suppressor genes and action of oncogenes (21).MMR occurs behind the replication fork (22, 23) and is a major determinant of the replication fidelity (24). The correction of DNA replication errors by the MMR system increases the replication fidelity by ∼100 fold (25). Strand breaks in leading and lagging strands as well as ribonucleotides in leading strands serve as signals that direct the eukaryotic MMR system to remove DNA replication errors (26, 27, 28, 29, 30). MMR is more efficient on the lagging than the leading strand (31). The substrates for MMR are all six base–base mismatches and 1 to 13-nt insertion/deletion loops (25, 32, 33, 34). Eukaryotic MMR commences with recognition of the mismatch by MutSα or MutSβ (32, 34, 35, 36). MutSα is the primary mismatch-recognition factor that recognizes both base–base mismatches and small insertion/deletion loops whereas MutSβ recognizes small insertion/deletion loops (32, 34, 35, 36, 37). After recognizing the mismatch, MutSα or MutSβ cooperates with RFC-loaded PCNA to activate MutLα endonuclease (38, 39, 40, 41, 42, 43). The activated MutLα endonuclease incises the discontinuous daughter strand 5′ and 3′ to the mismatch. A 5'' strand break formed by MutLα endonuclease is utilized by EXO1 to enter the DNA and excise a discontinuous strand portion encompassing the mismatch in a 5''→3′ excision reaction stimulated by MutSα/MutSβ (38, 44, 45). The generated gap is filled in by the Pol δ holoenzyme, and the nick is ligated by a DNA ligase (44, 46, 47). DNA polymerase ε (Pol ε) can substitute for Pol δ in the EXO1-dependent MMR reaction, but its activity in this reaction is much lower than that of Pol δ (48). Although MutLα endonuclease is essential for MMR in vivo, 5′ nick-dependent MMR reactions reconstituted in the presence of EXO1 are MutLα-independent (44, 47, 49).EXO1 deficiency in humans does not seem to cause significant cancer predisposition (19). Nevertheless, it is known that Exo1-/- mice are susceptible to the development of lymphomas (50). Genetic studies in yeast and mice demonstrated that EXO1 inactivation causes only a modest defect in MMR (50, 51, 52, 53). In agreement with these genetic studies, a defined human EXO1-independent MMR reaction that depends on the strand-displacement DNA synthesis activity of Pol δ holoenzyme to remove the mismatch was reconstituted (54). Furthermore, an EXO1-independent MMR reaction that occurred in a mammalian cell extract system without the formation of a gapped excision intermediate was observed (54). Together, these findings implicated the strand-displacement activity of Pol δ holoenzyme in EXO1-independent MMR.In this study, we investigated DNA2 in the context of MMR. DNA2 is an essential multifunctional protein that has nuclease, ATPase, and 5''→3′ helicase activities (55, 56, 57). Previous research ascertained that DNA2 removes long flaps during Okazaki fragment maturation (58, 59, 60), participates in the resection step of double-strand break repair (61, 62, 63), initiates the replication checkpoint (64), and suppresses the expansions of GAA repeats (65). We have found in vivo and in vitro evidence that DNA2 promotes EXO1-independent MMR. Our data have indicated that the nuclease activity of DNA2 enhances the strand-displacement activity of Pol δ holoenzyme in an EXO1-independent MMR reaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号