首页 | 本学科首页   官方微博 | 高级检索  
     


Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene‐induced senescent cells
Authors:Shin‐ichiro Takebayashi  Hiroshi Tanaka  Shinjiro Hino  Yuko Nakatsu  Tomoka Igata  Akihisa Sakamoto  Masashi Narita  Mitsuyoshi Nakao
Affiliation:1. Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan;2. Program for Leading Graduate Schools ‘HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program’, Kumamoto University, Kumamoto, Japan;3. Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK;4. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
Abstract:Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene‐induced senescence (OIS). A combination of real‐time metabolic monitoring, and metabolome and gene expression analyses showed that OIS‐induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB‐depleted or downstream glycolytic enzyme‐depleted OIS cells, suggesting that RB‐mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells.
Keywords:gene regulation  glycolysis  metabolic remodeling  oncogene‐induced senescence  oxidative phosphorylation  retinoblastoma protein
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号