首页 | 本学科首页   官方微博 | 高级检索  
     


Purification and characterization of cellulolytic enzymes produced by Aspergillus nidulans
Authors:P S Bagga  D K Sandhu  S Sharma
Affiliation:Microbiology Unit, School of Life Sciences, Guru Nanak Dev University, Amritsar, India.
Abstract:Three exo-glucanases, two endo-glucanases and two beta-glucosidases were separated and purified from the culture medium of Aspergillus nidulans. The optimal assay conditions for all forms of cellulase components ranged from pH 5.0 to 6.0 and 50 degrees C and 65 degrees C for exo-glucanases and endo-glucanases but 35 degrees C and 65 degrees C for beta-glucosidases. A close relation of enzyme stability to their optimal pH range was observed. All the cellulase components were stable for 10 min at 40-50 degrees C. Exo-II and Exo-III (Km, 38.46 and 37.71 mg/ml) had greater affinity for the substrate than Exo-I (Km, 50.00 mg/ml). The Km values of Endo-I and Endo-II (5.0 and 4.0 mg/ml) and their maximum reaction velocities (Vmax, 12.0 and 10.0 IU/mg protein) were comparable. beta-Glucosidases exhibited Km values of 0.24 and 0.12 mmol and Vmax values of 8.00 and 0.67 IU/mg protein. The molecular weights recorded for various enzyme forms were: Exo-I, 29,000; Exo-II, 72,500; Exo-III, 138,000; Endo-I, 25,000; Endo-II, 32,500; beta-Gluco-I, 14,000 and beta-Gluco-II, 26,000. Exo- and endo-glucanases were found to require some metal ions as co-factors for their catalytic activities whereas beta-glucosidases did not. Hg2+ inhibited the activity of all the cellulase components. The saccharification studies demonstrated a high degree of synergism among all the three cellulase components for hydrolysis of dewaxed cotton.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号